

ANNUALWATER OUALITY REPORT

PRESENTED BY

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

A Message from Jane Nye, Chair of the Board of Directors

Triunfo Water and Sanitation District (TWSD) is pleased to present the Annual Water Quality Report covering all testing performed between January 1 and December 31, 2022, on the drinking water served to your home or business. You will see in this report that once again, Triunfo's water supplies met all state and federal standards during 2022. This has been a challenging year for all of us from a

water supply standpoint due to the drought that impacted all of California. On behalf of the board of directors, I want to say thank you to all customers for your collective and noteworthy efforts to reduce Triunfo's water use this past year. Your efforts saved over 150 million gallons of water – a reduction of 35 percent compared to 2021 – and helped stretch the supplies available to us until the welcome rains arrived this winter. We remain committed to providing potable, recycled, and wastewater services that are reliable, high quality, cost-efficient, and delivered in a customer-friendly manner.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www. epa.gov/safewater/lead.

QUESTIONS? If you have any questions about this report or the quality of the water delivered to you, please contact Dave Rydman, Operations Manager, at (805) 658-4643 or email davidrydman@ triunfowsd.com. For any other questions, comments, or suggestions, visit our website at www.triunfowsd.com, call us at (800) 613-0901, email us at triunfowater@triunfowsd.com, or connect via Facebook, Twitter, Nextdoor, or Instagram (@ triunfowsd.com).

Water Conservation

In response to the one-dayper-week outdoor watering restrictions this past year, Triunfo customers collectively reduced the amount of water used by over 150 million gallons. Thankfully, the restrictions have been lifted because of the welcome precipitation this winter, but we encourage you to continue to be mindful of how you use water. Here are a few tips:

• Let the rain irrigate your landscaping when it comes Take a minute

it comes. Take a minute to set the dial on your irrigation controller to the "Off" or "Rain Delay" position before, during, and for a short time after rain events.

- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. If it does, check or replace the flapper, clean or replace the fill valve if the water does not shut off when the tank fills, or adjust the float so that the tank fills to a point below the overflow pipe in the tank. It is not uncommon to lose up to 2,000 gallons a day from an invisible toilet leak.
- Outdoor irrigation often accounts for around 70 percent of the water customers use in Oak Park. It is good practice to manually run each zone of your irrigation system for a short period during daylight hours once a month to ensure that there are no damaged emitters or supply lines that are causing a much larger volume of water use than you intend when the irrigation system operates. Also, regularly check and adjust the cycle lengths on your controller to only give your landscaping what it needs.
- When updating your landscaping, consider using native and drought-tolerant plants that do not need any more water than what is naturally provided by the rain once they are established. For ideas, talk to a neighbor in Oak Park that's already gone native. There are lots of great examples throughout our community. You can also pick up a copy of a brand new landscape guide at our office in Westlake Village for more ideas.

Have You Created an Account on the Customer Portal Yet?

All TWSD customers can track their water use in nearreal time. If you do not already have a profile on the Customer Portal (available at no additional charge), visit www. triunfowsd.com/signup to create an account. The portal allows customers to track water use by hour or day, sends text and email alarms when water use exceeds thresholds you set, or when there is a continual flow registered by the meter that may be the result of a leak.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/ hotline.

Where Does Triunfo's Water Come From?

All of the potable water served by TWSD originates outside of the service area and is imported via the State Water Project and the Colorado River Aqueduct. This water is filtered and disinfected by the Metropolitan Water District (MWD) and then conveyed by pipeline through the San Fernando

Valley to Calleguas Municipal Water District (CMWD), where it travels through CMWD's mile-long tunnel in the Santa Susana Mountains. The water is then distributed by CMWD to TWSD and other purveyors throughout Ventura County. Reserve supplies of this imported water are stored in CMWD's Lake Bard Reservoir in Thousand Oaks or its Las Posas Wellfield in Moorpark. In 2022 CMWD's supply of water consisted of 68 percent from MWD's Jensen Plant, 24 percent from MWD's Weymouth Plant, 6 percent from Las Posas Wellfield, and 2 percent from Lake Bard. TWSD distributed an average of 44 million gallons of water each month to a population of nearly 14,000 people in 2022.

Public Meetings

You are welcome to learn more about Triunfo Water and Sanitation District on our website, www.triunfowsd.com, or by attending any of the regularly scheduled board meetings. They are held on the fourth Monday of each month at 5:15 p.m. at the district's office, 370 North Westlake Boulevard, Suite 100, Westlake Village. For more information, please call (818) 889-8996.

The Benefits of Fluoridation

MVD treats your water by adding fluoride to the naturally occurring level to help prevent dental caries in consumers. State regulations require the fluoride levels in the treated water be maintained at or below 2 parts per million (ppm), with an optimum dose of 1 ppm. MWD's monitoring showed that the fluoride levels in the treated water ranged from 0.7 to 1 ppm, with an average of 0.7 ppm. Information about fluoridation, oral health, and current issues is available from http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems; radioactive contaminants that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Test Results

The water served to your home or business is monitored for many different kinds of substances on a very strict sampling schedule, and it must meet specific health standards. In the table below, we only show those substances that were detected (a complete list of all analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES											
				Triunfo Water	& Sanitation District	MWD J	MWD Jensen Plant				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED			I TYPICAL SOURCE		
Aluminum (ppm)	2022	1	0.6	NA	NA	0.062	ND-0.081	No	Erosion of natural deposits; residue from some surface water treatment processes		
Arsenic (ppb)	2022	10	0.004	NA	NA	2.4	NA	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes		
Barium (ppm)	2022	1	2	NA	NA	ND	NA	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits		
Bromate (ppb)	2022	10	0.1	NA	NA	7.2	ND-15.0	No	By-product of drinking water disinfection		
Chlorine (ppm)	2022	[4.0 (as Cl2)]	[4 (as Cl2)]	1.5	0.21–2.2	2.1	1.0–2.5	No	Drinking water disinfectant added for treatment		
Control of DBP precursors [TOC] (ppm)	2022	ΤT	NA	NA	NA	1.5	1.0–1.4	No	Various natural and human-made sources		
Fluoride (ppm)	2022	2.0	1	NA	NA	0.7	0.7–0.9	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories		
Gross Alpha Particle Activity (pCi/L)	2022	15	(0)	NA	NA	ND	NA	No	Erosion of natural deposits		
Gross Beta Particle Activity (pCi/L)	2022	50 ¹	(0)	NA	NA	ND	ND-5.0	No	Decay of natural and human-made deposits		
HAA5 [sum of 5 haloacetic acids]– Stage 1 (ppb)	2022	60	NA	10.5	3.7–26.0	11.0	2.0–29.0	No	By-product of drinking water disinfection		
Heterotrophic Plate Count Bacteria [HPC] (units)	2022	TT	NA	1.69	1.0–9.0	ND	ND-4.0	No	Naturally present in the environment		
Nitrate [as nitrogen] (ppm)	2022	10	10	NA	NA	0.9	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		
Nitrite [as nitrogen] (ppm)	2022	1	1	0.12	NA	ND	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		
Selenium (ppb)	2022	50	30	NA	NA	ND	NA	No	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)		
TTHMs [total trihalomethanes]– Stage 1 (ppb)	2022	80	NA	29.0	20.0–55.1	29.0	3.0–57.0	No	By-product of drinking water disinfection		
Combined Filter Effluent Turbidity (NTU)	2022	TT	NA	NA	NA	0.05	0.05	No	Soil runoff		
Uranium (pCi/L)	2022	20	0.43	NA	NA	ND	ND-3.0	No	Erosion of natural deposits		

REGULATED SUBSTANCES CONTINUED												
				MWD We	eymouth Plant	Calleguas Las	Posas Wellfield	Callegua	s LBWFP			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Aluminum (ppm)	2022	1	0.6	0.156	0.058-0.24	ND	NA	ND	NA	No	Erosion of natural deposits; residue from some surface water treatment processes	
Arsenic (ppb)	2022	10	0.004	ND	NA	3.0	2.0–5.0	ND	NA	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes	
Barium (ppm)	2022	1	2	0.107	NA	ND	NA	ND	NA	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits	
Bromate (ppb)	2022	10	0.1	ND	ND-7.6	NA	NA	ND	NA	No	By-product of drinking water disinfection	
Chlorine (ppm)	2022	[4.0 (as Cl2)]	[4 (as Cl2)]	2.1	1.0–2.5	2.1	1.0–2.5	2.1	1.0–2.5	No	Drinking water disinfectant added for treatment	
Control of DBP precursors [TOC] (ppm)	2022	TT	NA	2.4	1.7–2.6	1.0	0.9–1.0	1.1	NA	No	Various natural and human-made sources	
Fluoride (ppm)	2022	2.0	1	0.7	0.7–0.9	0.7	0.7–0.9	0.7	0.7–0.9	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories	
Gross Alpha Particle Activity (pCi/L)	2022	15	(0)	ND	NA	ND	ND-3.1	ND	NA	No	Erosion of natural deposits	
Gross Beta Particle Activity (pCi/L)	2022	50 ¹	(0)	6.0	4.0–7.0	ND	NA	4.2	NA	No	Decay of natural and human-made deposits	
HAA5 [sum of 5 haloacetic acids]– Stage 1 (ppb)	2022	60	NA	11.0	2.0–29.0	11.0	2.0–29.0	11.0	2.0–29.0	No	By-product of drinking water disinfection	
Heterotrophic Plate Count Bacteria [HPC] (units)	2022	TT	NA	ND	ND-4.0	ND	ND-4.0	ND	ND-4.0	No	Naturally present in the environment	
Nitrate [as nitrogen] (ppm)	2022	10	10	ND	NA	0.4	0.1–0.6	ND	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
Nitrite [as nitrogen] (ppm)	2022	1	1	ND	NA	ND	NA	ND	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits	
Selenium (ppb)	2022	50	30	ND	NA	8.0	6.0–13.0	11.0	NA	No	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)	
TTHMs [total trihalomethanes]– Stage 1 (ppb)	2022	80	NA	29.0	3.0–57.0	29.0	3.0–57.0	29.0	3.0–57.0	No	By-product of drinking water disinfection	
Combined Filter Effluent Turbidity (NTU)	2022	TT	NA	0.04	0.04	NA	NA	0.10	0.10	No	Soil runoff	
Uranium (pCi/L)	2022	20	0.43	2.0	1.0-3.0	2.2	1.8–2.8	1.4	NA	No	Erosion of natural deposits	

Tap water samples were collected for lead and copper analyses from sample sites throughout the community														
				Triunfo	Water & Sa	nitation D	istrict	ict MWD Jensen Plant						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)		DETECTED %ILE)		ABOVE AL SITES			SITES AB TOTAL		VIOLATION	TYPICAL S	OURCE
Copper (ppm)	2022	1.3	0.3	0.2	251	0.	/30	NA		N	IA	No		corrosion of household plumbing systems; erosion of natural deposits; from wood preservatives
Lead (ppb)	2022	15	0.2	3	.9	0.	/30	NA		N	IA	No	Internal industri	corrosion of household water plumbing systems; discharges from al manufacturers; erosion of natural deposits
		MWD Weymouth Plant Calleguas Las Posas Wellfield		Ca	alleguas Ll	BWFP	Í.	·						
	YEAR	AL	PHG (MCLG)	AMOUNT DETECTED (90TH %ILE	SITES / AL/T() SIT	OTAL	AMOUN DETECT	ED AL/TO	AL/TOTAL DETECTED ABC		SITES ABOVE AL/ TOTAL SITES	VIOLATIO	N TYPICAL SOURCE	
Copper (ppm)	2022	1.3	0.3	NA	N	A	NA			NA		NA	No	Internal corrosion of household plumbing systems; erosion of natural
														deposits; leaching from wood preservatives
Lead (ppb)	2022	15	0.2	NA	N	A	NA	NA	Ą	NA NA		NA	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
SECONDARY SU	SECONDARY SUBSTANCES													
							MWD Jens	en Plant			eymouth P	lant		
SUBSTANCE (UNIT OF MEASURE)			YEAR AMPLED	SMCL	PHG (MCLG)	AMOU DETEC		RANGE LOW-HIGH	AMO DETEC			RANGE LOW-HIGH		TYPICAL SOURCE
Aluminum (ppb)			2022	200	NS	62.	0	ND-81.0	150	6.0	58.0-	-240.0	No	Erosion of natural deposits; residual from some surface water treatment processes
Chloride (ppm)			2022	500	NS	70.	0	67.0–73.0	102	2.0	98.0-	-105.0	No	Runoff/leaching from natural deposits; seawater influence
Color (units)			2022	15	NS	1.0)	NA	1.	.0	Ν	JA	No	Naturally occurring organic materials
Iron (ppb)			2022	300	NS	NI)	NA	N	D	Ν	JA	No	Leaching from natural deposits; industrial wastes
Manganese (ppb)			2022	50	NS	NI)	ND	N	D	N	ID	No	Leaching from natural deposits
Odor, Threshold ((TON)		2022	3	NS	3		NA	3	3	Ν	NA No Naturally occurring organic materials		Naturally occurring organic materials
Specific Conductan	nce (μS/cn	n)	2022	1,600	NS	564	.0 5	57.0-572.0	992	2.0	964.0-	1,020.0	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)			2022	500	NS	76.	0	71.0-80.0	222	2.0	212.0	-232.0	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved So	olids (ppn	n)	2022	1,000	NS	334		332.0–335.0	638			-643.0	No	Runoff/leaching from natural deposits
						Calle	guas Las P	osas Wellfield	Call	leguas LB'	WFP			
SUBSTANCE (UNIT OF MEASURE)			YEAR AMPLED	SMCL	PHG (MCLG)	AMOL DETEC		RANGE LOW-HIGH	AMOU		RANGE OW-HIGH	VIOLATION	TYPICAL S	OURCE
Aluminum (ppb)			2022	200	NS	NI	D C	NA	NE)	NA	No	Erosion	of natural deposits; residual from some surface water treatment processes
Chloride (ppm)			2022	500	NS	75.	.0	63.0–90.0	105.	.0	NA	No	Runoff/	leaching from natural deposits; seawater influence
Color (units)			2022	15	NS	NI	D	NA	ND)	NA	No	Natural	ly occurring organic materials
Iron (ppb)			2022	300	NS	NI	D I	ND-140.0	ND		NA	No	Leachin	g from natural deposits; industrial wastes
Manganese (ppb)			2022	50	NS	NI	D C	ND-110	NE)	ND	No	Leachin	g from natural deposits
Odor, Threshold ((TON)		2022	3	NS	NI	D	NA	ND)	NA	No	Natural	y occurring organic materials
Specific Conductat	nce (µS/ci	m)	2022	1,600	NS	664	.0 5	84.0–716.0	733.	.0	NA	No		ces that form ions when in water; seawater influence
Sulfate (ppm)			2022	500	NS	105		90.0–133.0	89		NA	No		leaching from natural deposits; industrial wastes
Total Dissolved So	olids (ppn	n)	2022	1,000	NS	407	7.0 3	50.0-440.0	390.	.0	NA	No	Runoff/	leaching from natural deposits

UNREGULATED SUBSTANCES ²													
	Triunfo Water	& Sanitation District	MWD .	Jensen Plant	MWD We	ymouth Plant	Calleguas Las	Posas Wellfield	Calleguas LBWFP				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH		
Alkalinity (ppm)	2022	NA	NA	84.0	NA	127.0	126.0-128.0	100.00	NA	120.0	NA		
Anatoxin-a (ppb)	2018	0.0064	ND-0.0064	NA	NA	NA	NA	NA	NA	NA	NA		
Boron (ppm)	2022	NA	NA	0.22	NA	0.14	NA	0.30	0.20-0.46	0.30	NA		
Bromochloroacetic Acid (ppb)	2019	2.5	1.8–3.3	NA	NA	NA	NA	NA	NA	NA	NA		
Bromodichloroacetic Acid (ppb)	2019	0.35	ND-0.87	NA	NA	NA	NA	NA	NA	NA	NA		
Calcium (ppm)	2022	NA	NA	33.0	32.0-34.0	70.0	68.0–71.0	42.7	36.0–53.0	39.0	NA		
Chlorate [D] (ppb)	2022	NA	NA	243.0	NA	88.0	NA	ND	ND-30.0	ND	NA		
Chlorodibromoacetic Acid (ppb)	2019	0.87	0.51-1.4	NA	NA	NA	NA	NA	NA	NA	NA		
Corrosivity (AI)	2022	NA	NA	12.1	NA	12.5	NA	11.9	11.4–12.2	12.2	NA		
Dibromoacetic Acid (ppb)	2019	3.5	3.1–3.9	NA	NA	NA	NA	NA	NA	NA	NA		
Dichloroacetic Acid (ppb)	2019	2.3	1.1–3.5	NA	NA	NA	NA	NA	NA	NA	NA		
Hardness, Total (ppm)	2022	NA	NA	108.0	107.0-110.0	279.0	277.0-281.0	160.0	127.0–190.0	167.0	NA		
Magnesium (ppm)	2022	NA	NA	6.8	6.2–7.5	26.0	25.0–26.0	13.0	9.0–16.0	17.0	NA		
Monobromoacetic Acid (ppb)	2019	0.08	ND-0.31	NA	NA	NA	NA	NA	NA	NA	NA		
N-Nitrosodimethylamine [NDMA] (ppt)	2022	NA	NA	ND	NA	ND	NA	2.6	2.5–2.7	ND	NA		
Perfluoropentanoic Acid [PFPeA] (ppt)	2022	NA	NA	ND	NA	2.0	NA	NA	NA	NA	NA		
pH (units)	2022	NA	NA	8.3	8.2-8.3	8.1	NA	7.8	7.4-8.2	8.1	NA		
Potassium (ppm)	2022	NA	NA	2.0	NA	4.6	4.5-4.8	3.7	3.0-4.0	4.0	NA		
Sodium (ppm)	2022	NA	NA	72.0	71.0–72.0	100.0	98.0-103.0	70.0	58.0–78.0	89.0	NA		
Total Organic Carbon (ppm)	2022	NA	NA	1.5	1.0–1.4	2.4	1.7–2.6	1.0	0.9–1.0	1.1	NA		
Trichloroacetic Acid (ppb)	2019	0.26	ND-0.52	NA	NA	NA	NA	NA	NA	NA	NA		
Vanadium (ppb)	2022	NA	NA	6.2	NA	ND	NA	3.5	3.0-4.0	ND	NA		

¹ The State Board considers 50 pCi/L to be the level of concern for beta particles. ² Unregulated contaminant monitoring helps U.S. EPA and the State Board determine where certain contaminants occur and whether the contaminants need to be regulated. ³ Sampled in 2022.

Definitions

 μ S/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AI (Aggressiveness Index): AI measures the aggressiveness of water transported through pipes. Water with AI < 10.0 is highly aggressive and would be very corrosive to almost all materials found in a typical water system. AI > 12.0 indicates non-aggressive water. AI between 10.0 and 11.9 indicates moderately aggressive water."

AL (Regulatory Action Level): The

concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant

Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard.

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements. **PHG (Public Health Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (parts per trillion): One part substance per trillion parts water (or nanograms per liter).

TON (Threshold Odor Number): A measure of odor in water.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

Source Water Assessment

WD has completed a source water assessment of both the State Water Project and Colorado River supply. The State Water Project source is considered to be most vulnerable to urban and stormwater runoff, wildlife, agriculture, recreation, and wastewater. The Colorado River source is considered to be most vulnerable to contamination from recreation, urban and stormwater runoff, increasing urbanization in the watershed, and wastewater. A copy of this assessment can be obtained by contacting MWD at (800) 354-4420.

FOG (Fats, Oils, and Grease)

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into parks, yards, streets, and storm drains. Exposure to untreated wastewater is a public health hazard.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

- Pour fats, oil, or grease down the house or storm drains.
- Dispose of food scraps by flushing them.
- Use the toilet as a wastebasket.

ALWAYS:

- Scrape and collect fat, oil, and grease into a used container and dispose of it in your garbage.
- Compost your food scraps or place them in plastic bags for disposal in your green waste container.
- Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products, including nonbiodegradable wipes.